Pleural Sepsis:
Current Management Guidelines and
Current Evidence

SCTS Education Day
Birmingham 21st September 2016

Najib M Rahman
Associate Professor of Respiratory Medicine
Oxford Pleural Unit
Oxford Respiratory Trials Unit
najib.rahman@ndm.ox.ac.uk

Pleural Infection

Ancient History:
• ‘A diseased wound in the breast’*
• ‘An abscess with prominent head from the breast’ǂ

• Descriptions emphasise the need to ensure drainage of infected fluid

*From the ‘Edwin Smith papyrus’, c1500 BC (trans. Breasted JH, 1930)
ǂAttributed to Egyptian physician Imhotep, c3000 BC

Guillaume Dupuytren
(1777-1835)

‘I would rather die at the hand of God than at the hand of a surgeon’

Sir William Osler
(1849-1919)

‘Empyema needs the cold steel of a surgeon rather than some fool of a physician…’

Died of surgical complications
Management of pleural infection in adults: British Thoracic Society pleural disease guideline 2010

Helen S Davies,1 Robert J O Davies,1 Christopher W H Davies,2 on behalf of the BTS Pleural Disease Guideline Group

Introduction
Pleural effusion is a frequent clinical problem with an approximate annual incidence of up to 08/000 cases in the UK and USA combined. The associated morbidity and mortality is high, in the 15-20% of patients with empyema, and approximately 40% of patients aspirate to contain pleural effusion which will only occur for approximately 3% of pleural infections. The prevalence of Empyema is increasing, and the development of multi-drug resistant bacteria in the 15% increased complications and mortality. Hence, the importance of early recognition of sepsis and empyema.

Overview
- Accurate diagnosis
- Microbiological profile and antibiotics
- Optimal drainage strategy
- Outcome prediction
- Intrapleural therapy

Burden

Pneumonia:
- Combined (UK + USA) ~ 1.5 million cases of pneumonia per year

Related Pleural Effusion:
- Estimated 30-40% develop parapneumonic effusions ~ 600,000 cases per year
- Total number of complicated PPEs / empyemas = 80,000 cases per year
- i.e. around 10% of parapneumonic effusions are complicated or frankly infected

Pleural Infection – Rx principles

1. Accurate diagnosis
2. Control sepsis:
 - Suitable antibiotic therapy
3. Drainage of infected material:
 - Intercostal tube drainage
 - Intrapleural adjunctive therapies
 - Surgery
4. Good nutrition / VTE prophylaxis
Pleural Infection Outcomes

High morbidity:
- Mean hospital stay 10-14 days
- Surgical rate up to 35%

>20% one year mortality:
- Unchanged over last 20 years
- 7% in MI
- 8% in hospitalised pneumonia

Studies:
- Farjah et al, J Thorac Cardiovasc Surg 2007:
 - Annual increase in incidence of 2.8%
- Finley et al, Can Respir J 2008:
 - IRR 1.30 (95% CI 1.20 to 1.41)
- Grijalva et al, Thorax 2011:
 - Two fold increase in incidence
 - Highest in >65 years
 - Robust study design / large national database
 - Streptococcal / staphylococcal empyema increased

Overview

- Accurate diagnosis
- Microbiological profile – where does this infection come from?
- Optimal drainage strategy
- Outcome prediction
- Intrapleural therapy
Pleural fluid pH

Use:
- Highly sensitive measure of poor clinical outcome
- Clinically used as aid to decide which patients to drain
- Not 100% sensitive

When to question pH

1. Not in keeping with clinical picture
2. Multiloculation¹
3. Variants in measurement²:
 - Contaminant
 - Delay
 - Air not excluded from syringe
 - Not blood gas analyser
Overview

- Accurate diagnosis
- Microbiological profile
- Optimal drainage strategy
- Outcome prediction
- Intrapleural therapy

Pleural Infection

Is this just “pneumonia gone bad?”

Empyema with no associated parenchymal consolidation

Empyema with associated parenchymal consolidation + air bronchograms

Empyema with associated cavitating consolidation

Frequency (%) of CT features of empyema
97 patients with confirmed pleural infection
- Triple scored by independent radiologists
- Blind to clinical outcome and treatment

Franklin et al., in submission
Conventional microbiological yield is poor:
- 40% (including frank pus) microbiologically negative
- "Empirical" therapy therefore required in large minority

Community acquired empyema
- Cefuroxime 1.5g tds + Metronidazole 400mg tds
- Clindamycin 300mg qds po + Ciprofloxacin 500mg bd

Hospital acquired empyema
- Vancomycin 1g bd + Meropenem 1g tds
- Teicoplanin 400mg bd for 3 doses then 400mg daily and Meropenem 1g tds
Increasing diagnostic yield:
- Increase yield using Blood Culture Bottle Media?
- Supportive evidence from PD patients

The BCB study:
- Direct comparison
- Usual culture only vs addition of BCB inoculation
- Prospective, powered, control group
- Varied volumes

Use of Bactec system in addition to culture:
- Increases diagnostic yield by 21%
- Directly alters antibiotics in 4%
- No false positives
- All fluid volumes (2 / 5 / 10mls) equivalent
- BCB alone results in some false negatives

Menzies et al, Thorax 2011 66:658

Increasing yield:
- Today:
 - Innoculate pleural fluid in to BCB in addition to standard culture

- Tomorrow?:
 - Molecular microbiological techniques
Pleural Infection microbiology
Are we looking in the right place?
Overview

- Accurate diagnosis
- Microbiological profile – where does this infection come from?
- Optimal drainage strategy
- Outcome prediction
- Intrapleural therapy
- Role of surgery

Pleural Infection Rx

Intercostal drainage

Bigger is better?

Chest tube size and outcome

- Multiple case series:
 - Radiologically guided small bore chest tubes
 - Good outcomes
- Strongly held clinical belief remains
- Single direct comparison (pediatric)
Chest drain size

- Smaller tubes associated with less discomfort
- No apparent clinical disadvantage

Overview

- Accurate diagnosis
- Microbiological profile – where does this infection come from?
- Optimal drainage strategy
- Outcome prediction
- Intrapleural therapy
- Role of surgery
Outcome prediction in pleural infection

MIST1 + MIST2 cohorts:
- Identical recruitment criteria
- Multivariate modelling
- Identify factors which predict outcome which are:
 - Clinically accessible at baseline
 - Biologically plausible

Radiological prediction?

Chen et al., 2000:
- 163 patients, 83 septated at ultrasound
- Comparing septated to non-septated:
 - Longer hospital stay
 - Higher rate of fibrinolysis
 - Increased surgical rate

Chen et al., 2009:
- 141 small bore catheters, patients, 81 septated at ultrasound
- Comparing septated to non-septated:
 - Success rate lower
 - Higher ICU admission
 - Increased mortality

Problems:
- High tube failure rate
- Retrospective design
- Unblinded design
- Significant bias

Outcome prediction in pleural infection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measure</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal</td>
<td>Urea</td>
<td></td>
</tr>
<tr>
<td></td>
<td><5mmol/L</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5-8 mmol/L</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>8 mmol/L</td>
<td>2</td>
</tr>
<tr>
<td>Age</td>
<td>Age</td>
<td></td>
</tr>
<tr>
<td></td>
<td><50 years</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-70 years</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>70 years</td>
<td>2</td>
</tr>
<tr>
<td>Purulence of fluid</td>
<td>Purulent</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Non-purulent</td>
<td>1</td>
</tr>
<tr>
<td>Infection Source</td>
<td>Community-acquired</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hospital-acquired</td>
<td>1</td>
</tr>
<tr>
<td>Dietary Factors</td>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> or = 27mmol/L</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td><27mmol/L</td>
<td>1</td>
</tr>
</tbody>
</table>

Risk categories:
- Score 0-2 Low risk
- Score 2-4 Medium-Risk
- Score 5-7 High Risk
Kaplan-Meier Survival Estimates by RAPID score

Rahman et al, Chest 2015 145(4) 848

Outcome prediction - conclusions

- Prospective validation of RAPID score required
- No current reliable way of predicting management failure
- Treatment trial of “medical therapy” is reasonable in all cases

The PILOT Study

The Pleural Infection Longitudinal Outcome Study

Rationale:
- Protocolised management
- Identical data sets
- Biological samples
- Recruited 535/550 (97%) from
 - 25 UK centres
 - 5 international centres

Overview

- Accurate diagnosis
- Microbiological profile – where does this infection come from?
- Optimal drainage strategy
- Outcome prediction
- Intrapleural therapy
- Role of surgery
Intrapleural Fibrinolytics

- 4 small RCTs
 - Davies et al 1997
 - Bouros et al 1997
 - Bouros et al 1999
 - Tuncozgur et al 2001

Total of 104 adults

Surrogate outcomes

- Purulent pleural fluid
- Acidal pH<7.2
- Bacteria positive

Co-primary outcomes:
- Surgical Intervention
- Mortality

Streptokinase is ineffective in pleural infection

No differential effect by subgroups

Streptokinase is ineffective in pleural infection

NEJM 352: 865-874

MIST1

Purulent pleural fluid
Acidic pH<7.2
Bacteria positive

RANDOMISATION

Placebo
Streptokinase

Co-primary outcomes:
- Surgical Intervention
- Mortality

n=450

Cancer
Excluded
Purulent only

Short clinical history

NEJM 352: 865-874
Where from MIST1?

Explaining the result:
1. Wrong fibrinolytic
2. Fibrinolytic alone is not enough
 - Viscosity
 - Biofilms

Wrong Strategy: Viscosity

Wrong Strategy: Biofilms

Biofilms:
- Matrix of fibrin/uncoiled DNA + bacteria
- Bacteria resistant to antibiotics >100x MIC
 - Metabolically inactive bacteria
- Late clinical relapse
Biofilm forming empyema pathogens

- Staphylococci 11%
- Pneumoniae 13%
- Strep Milleri group 32%
- Enterobacteriacea 7%
- Proteus 2%
- Anaerobes 16%
- Hemophilus Influenza 3%
- Other 8%
- Other 8%
- Proteus 2%
- Enterobacteriacea 7%
- Anaerobes 16%
- Hemophilus Influenza 3%
- Other 8%

Community Acquired Pleural infection

Intrapeural Use of Tissue Plasminogen Activator and DNase in Pleural Infection

Naji M Rahman, D.PhD., Nicholas A. Maskell, D.M., Alex West, M.R.C.P.,
Daniel Peckham, M.D., Chris W.H. Owen, M.D., Robert All, M.D.,
William Kinnier, M.D., Andrew Berley, M.D., Bruno C. Kahan, M.Sc.,
John M. Wrightson, M.R.C.P., Helen E. Davies, M.R.C.P.,
Claus E. Hooper, M.R.C.P., Y.C. Gyu Lee, Ph.D., Emma L. Halley,
Nicki Cordwellis, R.G.N., Louis Chiu, M.Sc., Emma J. Holm, F.R.C.R.,
Fergur V. Gleeson, M.D., Andrew J. Nunn, M.Sc., and Robert D. Davies, M.D. 8

MIST2

- Purulent pleural fluid
- Acidic, pH<7.2
- Bacteria positive

Radiograph outcome
- Surgical Rate / Mortality

TPA
- DNase & TPA
- Placebo

Rahman et al, NEJM; 365: 518-526
Primary Outcome

Day 1

Day 7

Absolute change = (day 7 - day 1) = 8.0 - 38.9 = -30.9%
Relative change = (day 7 - day 1) / day 1 = -30.9/38.9 = -79.4%

Primary Result

tPA + DNase:
- Clear improvement in drainage
- Apparently safe
- Individual agents do not have any effect compared to placebo

Does this translate to other clinical benefit?

Secondary Outcomes
Odds of fever

- **tPA vs Placebo**
- **DNase vs Placebo**
- **Combination vs Placebo**

MIST2 - Conclusions

Should tPA + DNase be standard care?
- Definitive evidence of chest radiograph improvement
- Strong suggestion of improving other parameters
- NOT YET enough data to use in every patient

Use now?:
- Surgery remains the first line treatment (in my view)
- Where no other treatment options are available
- As part of a clinical trial

Current use

- Picolo et al, Ann Am Thor Soc 2014
 - 8 centres, n=107
 - All “failing medical therapy”
 - All given MIST2 regimen
 - 92.3% “success rate”

- Conclude
 - “Safe and effective as rescue therapy”

Conclusions

- Pleural infection is increasing
- Microbiology is complex – knowledge of likely microbiology essential in nearly half of cases
- Less pain from smaller drains and they seem to work
- RAPID - potential prediction algorithm (requires validation)
- tPA + DNase improves CXR (and maybe more)
Acknowledgments

Investigators
- N Maskell
- A West
- T Arnold
- N Ali
- C McKinlay

Oxford Respiratory Trials Unit
- J Wrightson
- G Lee
- N Crosthwaite
- M Dobson
- F Silfven
- E Helm

British Thoracic Society

MRC Clinical Trials Unit
- A Nunn
- L Choo
- H Clouting
- E Fossey

TSC / DMC
- R Miller
- R Light

MHRA
- E Godfrey

Genentech / Roche / BI